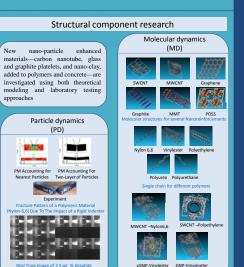


Nano-Particle Reinforced Composites for Critical Infrastructure Protection

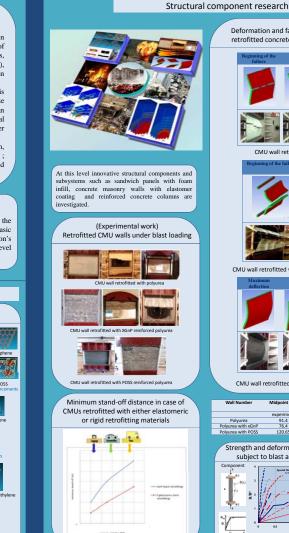
Mohammad Irshidat and Charles Burchfield

Department of Civil Engineering, University of Mississippi

Project overview

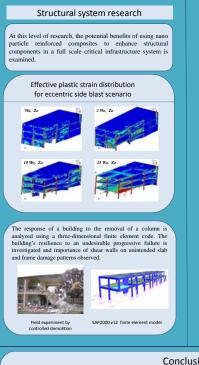

This project investigate the use of the recent advancement in material, structure, and building technologies for the protection of critical infrastructures, which include governmental buildings, emergency response system (police station, fire house, hospital), oil and gas pipelines, power and communication transmission towers, etc., against terrorist threats, as well as natural disasters.

The new structural/building technologies developed from this research can be used to improve the survivability of these structures. The findings, recommendations, and tools derived can become a part of the decision support system for local, state, tribal and regional leaders and emergency responders for better preparedness.


The research takes the multi-pronged and integrated approach. simultaneously addressing four research areas: material research : structural component research; structural system research; and decision support system research.

Project goal

The goal of the current research project is to utilize the nanotechnology that is still being developed today, at the Basic Technology Research Level (TRL 1 & 2), and apply it to the nation's critical infrastructure protection at the Technology Development Level (TRL 5).


Single chain for different poly

SAP2000v12 fiber model

(fived-ninned)

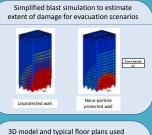
Publications

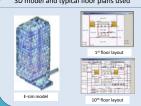
>Ten journal papers either published or

>More than thirty presentations in national and international technical conference

submitted

WI, L.W. 10


Fiber damage based normalized P-I curves


Six conference papers.

≻One book chapter.

Decision support system research

At this level of research, the potential benefits of using nano particle reinforced structural components, in terms of improving life safety from a major blast event in a critical facility of significance to the State of Mississippi, is evaluated. Blast mitigation, casual assessment, and evacuation simulation are conducted for the State Government's Executive Building.

Conclusion

Due to the innovative and high technology nature of the research, the current project covers a broad spectrum of TRL. For example, research accomplishments at material level may be classified as TRL 1 and 2, Basic Technology Research. On the other hand, research accomplishments in developing blast protection barrier and emergency evacuation planning have reached TRL 6, Technology Demonstration. By taking a multipronged approach we have achieved success at all levels, from basic material research, to component and system research, and to decision support systems research. However, due to the rather ambitious research plan and the relatively short project duration, firm connection between one level and the next has not been fully made. There are gaps to be bridged in order to provide a smooth flow of knowledge from the fundamental research level to the technology implementation level. This linkage is currently under investigation.

Future work

In the continuing research, the following additional material properties will be investigated for multihazard applications including fire, earthquake and hurricane: (1) thermal degradation/phase transformation of organic components in polymer nano composites during fire, (2) flammability and flowability of retrofitting materials, (3) heat transfer and associated heat induced fracture, and (4) aging retrofitting materials.

Acknowledgment

This project was funded through the Southeast Region Research Initiative program from the Department of Homeland Security, Science and Technology Directorate, Infrastructure and Geophysical Division